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DISCRETE CONTROL OF LINEAR DISTRIBUTED SYSTEMS WITH APPLICATION

TO THE DEFORMABLE PRIMARY MIRROR OF A LARGE,-

ORBITING TELESCOPE

ABSTRACT

One of the more significant technological problems associated with

the orbital operation of large astronomical telescopes is the fabrication

and maintenance of the primary mirror surface to the tolerance required

for diffraction-limited performance. An interesting approach to the

solution of this problem involves continuously measuring and automa-

tically correcting the optical surface of a thin deformable mirror by

means of discrete actuators located on its rear surface. The real-

ization of diffraction-limited performance from a telescope in space

by this method rests on the ability of the designer to achieve extremely

accurate control of a highly complex, interacting, multivariable system.

This paper presents the results of a detailed study of the discrete

control of linear distributed systems with specific application to

the design of a practical controller for a plant representative of a

telescope primary mirror for an orbiting astronomical observatory.

The problem of controlling the distributed plant is treated by

employing modal techniques to represent variations in the optical

figure. Distortion of the mirror surface,wnich arises primarily from

thermal gradients, is countered by actuators working against a backing,

structure to apply a corrective force distribution to the controlled

surface. Each displacement actuator is in series with a spring attached
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I. INTRODUCTION

The class of distributed plants considered in this paper is

restricted to those described by linear, time-invariant, separable

operators where control is derived from a finite number of discrete

inputs. Application of the modal expansion approach(l) converts the,

distributed-parameter problem to one of a multivariable nature which

readily yields to decoupling teChniques.(2) Classical single-variable

control methods are applied to decoupled system dynamics defined in

terms of the eigenvalues of the linear operator whose eigenfunctions

are assumed to form a complete orthonormal set. While the results

are applicable to the general problem of controlling linear distributed

systems, the motivation for the study is a direct result of its

'relevance to one of the central problems of large orbiting telescope

technology.

Elimination of the effects of the earth 's atmosphere give orbiting

telescopes significant advantages relative to earth-based telescopes.

Figure 1 displays percent transmission of the incident radiation

through the earth's atmosphere as a function of wavelength.(3) In

the portion of the spectrum shown, the earth's atmosphere is opaque

to radiation shorter than 3 X 10-5 cm and longer than 3 x 10-3 cm, with

numerous gaps between these extremes. Since the entire spectrum of

radiated energy becomes available for study in an atmosphere-free

envitonment the additional spectral coverage would permit studies

involving galactic nebulae and cool stars (stellar evolution). (4)

1
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Secondly} refraction anomalies associated with the turbulence of the

earth's atmosphere limit the resolving power of earth-based telescopes;

consequently} the 200-inch (508 cm) Hale telescope at Mt. Palomar has

no better resolution than a high quality telescope of approximately

15 inches (38 cm) diameter.(5) Placing a 120-inch (3 meter) telescope

in orbit would yield an increase in resolution of at least a factor of

7 relative to land-based telescopes and 3 .relative to present space

telescopes. This significant improvement is useful in studying double

stars and in planetary photography. (4) Figure 2 shows two views of

the same portion of the lunar surface. The photograph on the right

was taken by the 120-inch (3 meter) reflector at the Lick Observatory

and represents about the best resolution available from an earth~based

telescope. On the left is a Lunar Orbiter photograph of the same area

which has been selected to show the resolution available from the same

size telescope outside of the atmosphere. Further} elimination of the

background glow associated with ·the atmosphere would permit longer

exposure times in celestial photography} effectively enabling astronomers

to see deeper into space. Realization of these advantages is contingent

upon solving several technological problems .

.One of the more significant of these problems and the one which

motivated the present investigation is the fabrication and maintenance

of the primary mirror surface to the tolerance required for diffraction-

limited performance. For the purpose of this paper} diffraction-limited

performance Is defined as being obtained when the rms figure error

over the mirror surface is less than a fiftieth of a wavelength, which
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at 6328 Ais 1/2-~ inch (1.27 x 10-6 em). It is extremely difficult

to achieve this accuracy with the monolithic ~irror normally used in

telescope applications as uncorrected thermal gradients, fabrication in

a one "gil and operation in a zero "gil environment, and .material reaction

to stresses introduced during figuring all tend to cause distortion of

the mirror surface.

An interesting approach which has been investigated as a means of

solving the problem involves measuring the deviation of the mirror

figure from the desired shape, generating the necessary control signals,

and applying these signals to physically align the mirror to the desired

shape. This concept, which is shown schematically in Fig. 3, has been

investigated with both a segmented and a thin deformable mirror. The

segmented mirror consists of a number of individual pieces or segments.

This approach was selected because many of the effects causing surface

deformations are reduced on mirrors of small size. In a Cassegrain

telescope the incoming light is reflected by the primary and secondary

mirror to focus behind the primary. In this case, the primary is also

illuminated by monochromatic light which is returned to the mirror

figure error sensor. The error signal is then processed and applied

to the actuators which correct each segment in tilt and focus.

This concept has been successfully applied to a small segmented

mirror. (6, 7). However, the construction of large segmented primary

mirrors from individually fabricated off-axis portions of a paraboloid

(matched in focal length) would require new techniques of fabricating
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diffraction-limited aspherics. In addition, the segmented mirror

consists of a number of monolithic mirrors each subject to the same

limitations as a monolithic mirror. , While these limitations are

reduced in the relatively small segments, they are still of sufficient

magnitude to require that the segments be fabricated from a substance

which exhibits a very high degree of material stability. This is

because the segments are corrected in tilt and focus only and any

warping of a segment cannot be completely corrected.

An alternate approach involves a thin, continuous-surface,

deformable mirror that can be stressed into the desired shape by means

of a large number of actuators arrayed across its rear surface. The

greater control flexibility inherent in this approach shows promise

of relaxing the material stability and fabrication tolerance require-

ments. A laboratory model of a thin mirror is shown in Fig. 4 alongside

a conventional monolithic mirror. The thin mirror is 30 inches (76.2 em)

in diameter and 0.5 inches (1.27 em) thick. Actuators were located

every 3-3/4 inches (9.46 em) over the rear surface of the mirror and

were used to apply a corrective force distribution.(8) Preliminary

operation of the system indicates that the actuators were able to

reduce the initial figuring error to acceptable ,levels. This is

illustrated in Fig. 5 which displays photographs of the diffraction

pattern of the mirror before and during control.

While this application appears to demonstrate the ability of the

thin mirror approach to enhance the telescope performance, a number of

areas exist in which an improved design technique would be of significant
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value. In present design efforts the dynamics of the plant have been

largely ignored. This is a significant factor in the control of larger

mirrors which have very lightly damped low frequency resonances.

Selection and placement of the actuators is presently done on an

arbitrary basis as a result of the present limited ability to relate

the effects of these design decisions to system performance. In

addition, the ability to more completely incorporate information on

the disturbance characteristics, to the extent that it becomes

available, is desirable.

The purpose of this paper is to present a.general theory for the

discrete control of a distributed-parameter system and extend the modal

expansion technique to completely specify system performance.

In the past little research effort has been devoted to the problem of

obtaining discrete control of distributed~parametersystems and the

results which have been obtained by Gould and Murry-Lasso(l) are limited

to plants which have finite. modal content. In this thesis the entire

modal structure of the plant is considered for the problem of obtaining .

a specified level of performance while minimizing the number of ·controi

inputs to the plant. The method is demonstrated with eX~les and

results are presented fora plant representative of a thin deformable

mirror.



II. MODAL EXPANSION TECHNIQUE

A schematic representation of the plant under consideration is

shown in Fig. 6 where L is a linear, time-invariant, separable operator.

A typical example of a distributed system is the thin rectangular plate

of Fig. 7, where the deflection normal to the midplane of the plate

w(x,y,t) results from the application of a transverse load density

p(x,y,t). The equation of motion of the plate is gi~en by(9)

-P 02
V- S v2w(x,y,t) + p --- w(x,y,t) = p(x,y,t)

21t2

where y2 is the Laplacian in Cartesian c09rdinates, P the mass per unit

area, and S = Yh3/12(1 - v2 ) is the flexural stiffness modulus of the

plate. The deflection, w(x,y,t), is assumed geparable, i.e.,

Substituting [2J into the homogeneous form of [lJ yields, for a

homogeneous plate of uniform thickness,

and

§. J+u. (x,y) - (J)~u. (x,y) = 0
p ~ ~ ~

11



J Plant
p(x,y,t) ----II- L ~--=>~ w(x,y,t)

Figure 6.- operator representation of the plant.

12

x

a

/~'<--b--7~'

,----------.... ~ y

Y = Young's modulus

V = Poisson IS ratio

Figure 7.- Flat rectangular plate.



where (.Of is a constant whose value is specified by the boundary

conditions. For the simply supported plate, which has boundary

conditions(lO)

13

[4a]

= 0,

x = O,a

and

= 0,

Y O,b

there exists(ll) a denumerablyinfinite sequence

where m, n = 1, 2, ••• are the mode indices corresponding to the

eigenfunctions

ui = Umn(x,y) = ~ (sin m ~ x)(sin n ~y)
ab ,a b

which form a complete orthonormal set (Appendix A). Consequently,

the general solution to Eq. [lJ is

[5aJ

[5tJ
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w(x,y,t) =L ci(t)ui(x,y) = L cmn(t)umn(x,y)

i=l m,n=l

and since the ui form a complete set the loading may be expanded in a

uniformly convergent series of the form

co co

p(x,y,t) =Lai (t)Ui (x,y) = L ~(t)Umn(x,y)
i=l m,n=l

where

and r is the spatial region in which the plant is defined.

Substituting [6a], [§bJ, and [3bJ into [lJ and taking the Laplace

transform with respect to time yields

co

L (s2 + (1)~)ci (s)ui (x,y) = ~I ai (S)Ui (x,Y)

i=l i=l

where s is the Laplacian operator and, for convenience, the same symbol

is used to denote a variable and its Laplace transform. Since the

Ui(x,y) are independent the coefficients may be equated yielding

[sJ
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Based on Eqs. [6a-cJ and [8a-b], the plant shown in Fig. 6 may be

redrawn as shown in Fig. 8 which is a modal expansion of the distributed

plant~

( )( )a l S C s
Modal decomposition I A

l
(s) l 1 ;:

of p(x,y,s) Recomposition

p(x,y,s) a
2

(s)
_~ A

2
(s) l C2~S) w(x,y,s)

a.(s) == w(x,y,s) ==1

Sp(x,y ,s)u
i
(x,y)dxdy

.
a (s) . C (8) IX>

n J A (8) I n 2j C. (8)U. (x,y)
. 1 1 1r I n I : 1==

Analyzer Synthesizer

Figure 8.- Modal representation of the plant.

More generally, Fig. 6 represents the functional equation

w(z,t) = Lp(z,t)

where z represents a general spatial variable (in one or more

dimensions) and the operator L operates on functions of time and

distance. Laplace transforming Eq. [9J with respect to time yields

w(z~s) = Lp(z,s)

where the eigenvalues of L satisfy

Since the ui(z) are assumed to form a complete .set, the separable

functions w(z,s) and p(z,s) can be expanded as
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00

w(z,s) =Lci(s)ui(z)

i=l

and

00

p(z,s) =L
i=l

a.(s)u.(z).
~ ~

Substituting [llJ, [12aJ, and [12bJ into [lOJ yields

00 00 00

L ci(s)ui(z) = L L ai(s)ui(z) =L ai (s)"1(s)ui (z)

i=l i=l i=l
I

and conse'luently,

with a
i
(s) defined by the transform of E'l. [6c]' Figure 8 is then

the general modal representation of the class of distributed plants

under investigation. In a function space where the eigenfunctions of

L are used as the coordinates the system is represented by the infinite

diagonal matrix

In this reference frame, control of the plant output can be readily

achieved by individually compensating each element of the diagonal

matrix, as shown in Fig. 9.
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r.(s) e.(s) a.(s) c.(s)

1 1__1

_>_I_d_i(_S)_JI-_-_-_1~~~1__A_i(_s)_:I-· -_1==

Figure 9.- Decoupled compensation of Ai(s).

The significance of the modal control indicated in Fig. 9 is that

it is relatively easy to express the system least squares performance

in terms of the orthonormal modes of a vibrating structure. This is a

phenomenon of particular interest in the mirror application since the

integral square ~rror is the desired performance index of an optical

surface. (12) With the error in the optical surface we represented by

the modal coefficients ei the image index (expected integral square

error) is given by

Jr ={Jr ~(Z,t)d~ ={!r[Zl ei(t)Ui(z~2d1

=E[~1 ei(t1 =Zl

where E denotes the expectation and (i is the variance of the error
ei

in the i th mode which is assumed to have a zero mean. The last steps

result since ui(z) is a member of an orthonorriJal set. Thus, the measure

of image quality, J I , is a simple functton of the variance -of the mode
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error which can be reduced by appropriate control one mode at a time

as indicated in Fig. 9. Relating the original signals in the system

to those of the decoupled reference frame, the control system structure

becomes that shown in Fig. 10 where e and a a~e colUmn matrices whose

elements are the modal coefficients ei and ~,respectively. In

practice the situation illustrated in Fig. 10 can only be approximated.

The function of the analyzer is to determine the modal content of the

optical surface error. The decoupled controller dynamics, represented

by the matrix D( s) = diag [ di (s)J, is determined on the basis of

standard design te~hniques (see Fig. 9) to achieve a satisfactory

performance level. For a well-ground mirror the need for corrective

action diminishes as the mode number, i, increases and control can be

reasonably be restricted to the significant modes. The N controlled

modes are denoted by the output and error N vectors cN and eN in Fig. 11.

The finite (N x N) controller matrix is represented by DN. The

function of the load synthesizer is to place an appropriate force

distribution on the plate to correct for the modal errors in eN. Since

the remaining modes are unmonitored (no corrective action taken), the

ideal force distribution applied by the loading mechanism is

N

Pideal(z,t) =I.
i=l

a.(t) u.(z)
~ ~

with none of the uncontrolled modes eXGited. Physically this corrective

loading is applied by finite number of control manipulators Which, in
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the mirror problem, are comprised of displacement actuators in series

with a spring acting against a backing structure. The spring is attached

to the mirror by means of a pad intentionally introduced to restrict

the excitation of uncontrolled modes (a point discussed in detail later

in the paper). The actual (non-ideal) force density applied by these

N actuators is given by

N N

p(z,t) =L Pj(z,t) =I CLj (t)l3j (Z) [17J
j=l j=l

where Pj represents the force distribution resulting from the jth

actuator, and the last step results under the assumption that each

applied force distribution is separable in time and distance. Expanding

each of the I3j(z) in terms of the eigenfunctions, ~i(z), Eq.[17J becomes

where

hiJo =f l3o(z)~"(Z)dZr J ~

and comparison with [6bJ reveals

N

ai(t) =I ~jCL/t).
j=l

.[18aJ
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In matrix form this relation between the mode force coefficients and

the actuator signals becomes

where H is an 00 x N matrix and a,N is an N vector. Equation Q-9bJ

indicates the control elements excite all modes. Since only N of the

more significant modes are controlled, Eq. 1}9bJ is partitioned as

where ~ is an N x N matrix, ~ an 00 x N'matrix, aN an N vector

corresponding to the controlled modes, and aR accounts for the remaining

modal force coefficients. To provide the desired corrective vector

aN the actuator inputs are given by

where it is assumed that the actuator locations insure HN is non

singular - this point is discussed in detail in a subsequent section.

Partitioning the matrix representing the plant dynamics into components

corresponding to the controlled and uncontrolled modes, the overall

system becomes that shown in Fig. 11 where disturbances qN and qR acting

on the plant are included as equivalent displacements. When the mod.e

number, i, is ordered with increasing frequency of vibration; U1 =~,

the plant inherently performs modal filtering which attenuates the
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higher modes so that their contribution. to the error (mirror distortion)

rapidly becomes negligible as the mode number increases. Consequently}

it is often assumed that only the first Nmodes are present} i.e.}

cR and aR are identically zero} and considerable simplification results.

For example} let wN be an N vector defined by the output at N different

points. That is}

Nw :::: col w( z . }t )
J

where z. represents a measurement point. In terms of the mode
J

displacement coefficients

where

UN ::::

Under these conditions the mode analyzer becomes simply an operation

on the N measurements; specifically

N
w

where the senSors are located at positions to insure UN is nonsingular.

The control structure of Fig. 11 then reduces to the N x N multivariable
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system(2) shown in Fig. 12. This idealized representation, valid when

the effects of the higher modes can be safely neglected, was derived

by Gould and Murray-Lasso and is treated in detail in reference 1.

Control of the low-order high-amplitude modes as indicated in Fig. 12,

(13)
or in the decoupled form of Fig. 9, presents the classic problem

of controlling a resonant plant with a limited control effort (restricted

actuator throw). While for large primary mirrors with low resonant

frequencies this may be a substantial problem, in the present paper

it is assumed that the disturbances qN(t) are slowly varying and of

sufficiently small amplitude that any desired degree of control can

be realized. Negligible contribution from the uncontrolled modes can

generally be assured by permitting N to be arbitrarily large. However,

in the present problem extremely accurate control of the optical surface

of the thin deformable mirror for diffraction-limited performance is

required with a minimum number of actuators. Under these conditions

the effects of eR and aR are not negligible, but, in fact, represent

the most significant system errors and the most important factors in

evaluating design tradeoffs.
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III. ACTUATOR PAD SIZE AND LOCATION AS DESIGN FACTORS

The uncontrolled modes enter the problem in two major ways. First,

the actuators excite not only the controlled modes but, in general,

all modes. To demonstrate, first separate the image quality index

into two parts, i.e.,

where

N

~=I
i=l

accounts for the error in the controlled modes and

00

~=I
i=N+I

accounts for the remnant error of uncontrolled modes. As larger

actuator displacements are commanded in order to reduce I N to smaller

and smaller values JRincreases due to the effect of aR,. Secondly,

uniess direct measurements of the modes are made, a limitation on the

ability of the displacement sensors to obtain an uncorrupted estimate

of the N controlled modes results from the p~esence of eR•

Actuator Pad Size

The function of the actuators, as indicated in the previous

section, is to apply forces to reduce eN while minimizing 'the

excitation of the uncontrolled modes, i.e., ideally

26



x· __-+__
J

n ~ Gt-J nN nonsingular.

In the mirror problem the control manipulators are modeled by a

displacement actuator working against a backing plate and a relatively

soft spring which is attached to the mirror by means of a pad. The

ability to approach the situation on Eq. [26J is governed by pad size

and location, which are factors under the influence of the designer.

To illustrate the effect of pad size, consider the rectangular plate

of Fig. 7. The pads are assumed to be rectangular in shape and

located as shown in Fig. 13.

y.
J

o----+-----..,----. ---;;;>~ y
..-~--i

+ (AX)r

'- --;r
~(AY)j~

x

Figure 13.- Pad shape, size, and location.
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The amount of force applied by the jth actuator is determined by the

product of the spring constant K and displacement actuator position.

This force loads the plate as indicated by Eq. [17J with

Kfj(x,y)
f3j(X'y) = -------

J~ fj(X,y)dx dy

where fj(X,y) is the distribution of the force and ~j(t) is the control

input. Considering a force distribution that is constant over the area

of the pad, Eq. [lBb] yields

. mme . mry dx d
s~n --- s~n --- y

a b

. m,,(.6x) j . n:n:(AY) j
s~n s~n !

4K mme. n:n:y. 2a 2b
=- sin __J sin __J • [28]

ab a b
~6x). ~AY)'
2a J 2b J

where i indexes the mode m,n. For this special case with constant pad

be rewritten in matrix form as

H = GU'
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where U is the N x 00 matrix,

ul(zl) u2(zl) . ui(zl)

U = , [291j

ul(zN) u2(zN) • ui(zN)

the prime denotes the transpose of a matrix, zi denotes the point xi,

and

m1t0. n~a
sin -- sin --

2a 2b
gi = ~ =K [30J

m1t0. n1fL\a
2a 2b

Figure 14 contains a plot of (sin ~)/~. Assuming the controlled modes

are m ~ mmax and n ~ llmax and pad dimensions are ~a ~ IDm:X and

~ ::: U:ax' the maximum value of the argument for one of the controlled

modes is ~ = n/2 which occurs when adjacent pads touch. The attenuation

of the higher order modes by the pad is apparent from this diagram as

the elements of G decrease rapidly for i > N and, in turn, decrease

the output levels of HR approaching the idealized condition of Eq. [26J.



sin(~) 1.0

~ .8

.6

.4

.2

0

-.2

30

-- Minimum transmission level,
for a controlled mode

Figure 14.- Plot of sin (~)/~ illustrating the filtering action of pad.

The prefilter action of the pad is complemented by the transmission

properties of the plate itself. For the rectangular plate of Fig. 6

the relation between the applied loading and displacement output for

the i th mode is

a.(s)/p
ci(s) = --~---~

s2 + €s + roi

where a small amount of damping has been included. In response to a

step input the steady transmission is

c~ 1lim ...-=-t ~ 00 a i of.
P i



where (.l)~ i s given by Eq. [5a]. As surning a o. 5 inch (1. 27 em) thick,

30-inch (76.2 cm) square plate with a YOlllg's modulus of 107 pounds

per square inch (70.3 X 10 gmjcm2) and a Poisson's ratio of 0.2,

this factor is

31

=
7.73 x 10-2

(m2 + n2 )2

A byproduct of the pad's desired effect on HR is a decrease in the

transmission properties of HN. As a consequence, an increased effort

is required to deflect the surface. This is readily demonstrated for

the simply supported rectangular plate where

and with appropriate actuator placement uN is orthonormal (see

Appendix B). Consider the expected value of the norm of the actuator

displacement vector given 'by

N
Thus, as the elements of G are decreased, the required control

displacement and force increases. Since the plate itself was shown

to perform substantial filtering, a compromise on the final pad Shape

and size is normally employed.
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This is approximately achieved for most plants by locating pads at the

zeros (nodes) of the mode in question. For the rectangular plate, this

is exactly achieved since the influence of pad location of H is

delineated by U', see Eq. [29J. When the modes are ranked in order of

importance, the desired goal is to control the first N and, null the

next highest modes; however, this is not usually possible and trade-

offs are required. For example, it may be possible to control a set

of modes that are not the N most significant but be able to preclude

excitation of the next highest modes or, alternatively, control the N

most significant modes but not have the ability to preclude excitation

of'the most dominant uncontrolled modes. Since the controlled modes may

be reduced to any desired level at the cost of some increase in the

. amplitudes of the unmonitored modes, the contribution of these higher

modes to system error represents the most critical factor in system

design. Determination of the trade-offs in actuator size and placement



is obtained through evaluation of the system performance index, JI ,

which is discussed below and illustrated later in two examples.
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IV• STATIC PERroRMANCE

The design objective is to minimize the image index defined as the

expectation of the integral square surface error. As shown in Eq. [15J

this is a function of the mean square values of the modal error

coefficients. Determination of Jr as given by Eqs. [25a-cJ is depe.1dent·

on the nature, particularly the spectral content, of the disturbanc(·s. ,

For the application to the control of a .deformable primary mirror of

an orbiting tele scope , it is anticipated that the primary error sources .

will be initial figuring errors and. relatively slowly time-varying

thermal gradients. In this context it is reasonable to eXpect that tie

system will gener~ly be performing at or near its static values.

In Fig. 11 the surface deformation due to the disturbances is

defined in terms of its.displacement modal expansion coefficients, q.

No loss in generality results fram considering the disturbances to be

displacements since equivalent force distributions could be assumed.

With reference to Fig. 11, and with ~(z,s) zero, the error in the

control modes is given by

N N Nil N
e = - [I + A D J q.

For the static situation this reduces to

o < i S N

. 34
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where Ki is the loop gain (type 0 $ystem) for the i th mode. When the

loop transmission contains a pure integration (type 1 system), Ki ~ 00.

Thus the error in the controlled modes can theoretically be reduced to' ,

any arbitrarily small value. The expected value for IN then becomes

where O'~ is the rms value of the static (or slowly varying) disturbance.

The-error in the uncontrolled modes is given by

= -

which under static conditions becomes

N

ei = qi +I '!rij
Kj

qj-
1 +Kj

j=l

where '!rij is an element of the matrix

Assumingthe modal coefficients of the disturbance are illlcorrelated, i. e.,

? i f j
[4IJ'E(~q) =

i = j
qi



the exPected error in the uncontrolled modes becomes

where JRo is the value of the disturbance error in the higher modes

without control. The second term JRc is clearly positive and represents

the increase in JR that results from the actuator displacements

required,to control the errors in the first. N modes. Since JRc is

finite, the series converges and the order of summation may be reversed,

yielding

where

00

cpi = I ~~i
. j=N+l

is a constant dependent on the design factors of actuator pad size and

location as well as the natural modal filtering performed by the plant.

Combining Eqs. (j5a-cJ ' {)8J ' and [43J yields as the imaging index

[44J

The first term is unaffected by the control action, the second decreases

as a result of the control action and the third increases.
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Since JR is constant, minimization of Eq. [44J with respect to
o

Ki yields optimum performance when

1 [45JKi =-
cp?
~

and

N N 2

~1 (1 ~d
2 + JR L CPi 2 + JR . [lj6JJ = (J . = (Jqi.I opt qi 0 1 + cP~ 0

i=l . ~

with the controlled and uncontrolled. components given by

= f ( cri ) ~
L 1 + cp? ~.
i=l ~

and

N

Recalling that without control J
No

= L.(J~, it is seen that for large

i=l

loop gain the error in each term of JR t due to control is approximately
op

l/Ki while each term in JNopt is reduced by an additional l/Ki.

Thus, if significant improvement is to be gained in the optical surface

by the above method, N must be selected sufficiently large and the

actuator size and placement such that cp~ = ilK. «1. In the mirror·
~ ~



situation JRa is negligible and J
Rc

represents the major source of

concern.

Because Ki is large, a type 1 system is normally employed and

The required value of N to achieve the desired rms figuring error can

be minimized by the selection of pad 'size and location whose effect

is manifest through the parameters cp?
~



V. MODE ESTrnATION ERROR

The preceding analysis assumed ideal measurement of the controlled

modal variables ei; however, in many applications it is neither

practical nor possible to obtain direct measurements. In these cases

an estimate is often derived from a spatial sampling of the distributed

output. This is the case in the mirror problem where the most connnonly

used measurement of the optical surface is performed by the interference

method illustrated in Fig. l5. This mirror figure error sensor is

a modified form of a Twyman-Green interferometer. In this interferometer

two plane wavefront beams are formed from a common coherent source.

One beam is reflected from a reference flat while the second is con-

verted to a spherical wavefront whose center of curvature is that of

the mirror. This wavefront is returned by the mirror and forms an

interference pattern with the refer~nce beam which is focused on the

N discrete individual sensors. Periodic motion of the reference flat

produces a sine wave of identical frequency at each detector. This

converts the error determination from an amplitude to a phase measure-

ment and permits the required sensitivity to be achieved.

Under conditions where no modes except the first N exist, the

relation of the modal coefficients to the N measured values is given

by Eq. ~4J which for the mode error is

N r_.Nl-l N
emeas = LUJ we'

39
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However, the presence of the high-order modes deteriorates this

measurement since the actual measured vector is defined by

where if is the N x 00 matrix

Consequently, the estimate of the modes in Eq. [.56J becomes

The manner in whic~ the measurement error eN, defined in Eq.

evolves is shown in Fig. 16. The disturbance error in the first N

mode s can be controlled to an arbitrarily small value (see Eq. [38]),
while errors in the remaining modes cannot be counteracted. A major

effect of the measurement error in Eq. [53J is to introduce an

additional error in the controlled modes. To illustrate, the.vector

eN is seen from Fig. 16 to be given by

where
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and substituting [54bJ into ~4aJ and rearranging yields

For a type 0 system under static conditions, Eq. [55J becomes

i:5.N

or, for a type 1 system

Attention is now given to the error defined by Eq. [56bJ since, as

previously established, most practical systems would possess an

infinite loop gain. Two distinct cases are now considered: one where

eR is dominated by the disturbances acting on the. plant, i.e.,

and, secondly, where the error in the higher-order modes contributed

by the disturbance vector, qR, is negligible but the error introduced

by the control effort is significant,. i.e.,

. r..N1-1_.R -1 N
= (I + 'fLu J tr) 'fq. [58J

. 1·
For ease in later calculations it is assumed that ~{U~ uR .is negligible

compared to I and that UN is nearly orthogonal permitting the contributicn
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to I N arising from EN to be determined from the norm of the measurement

t th N t · t N _R R _.N Nerror a e measuremen po~n s WE = If-e = If"E •

where

That is,

[59~

= ~
case I

case II

If the modal coefficients of the disturbances are uncorrelated then

Eq. B9~ for case I becomes

J
~eas

2
a .
%

[60J

N

The sensor locations are chosen to mini.ni.ize I ui(zn) for as many of
n=l

the more significant high order modes as possible. This result is

consistent with that concluded with regard to actuator placement and,

consequently, the criteria for actuator and sensor placement are

identical. S'ince increasing the number of sensors is relatively

inexpensive, in 'many cases it will be desirable to have more ,sensors

than actuators (or controlled fuOdes). If M > N sensors are used, a

parallel development indicates that with increased measurements



yielding an expected improvement of

For the second case, of which the mirror problem is typical, the

distortion in the higher modes is caused by the control action and the

measurement error at the nth sample point is

2
From the properties of the disturbances, the expected value of w€(zn)

can be determined and is given by

[64aJ

and

This error is on. the order of magnitude of the error in·the uncontrolled

modes JR and represents the effect of estimating the modal coefficients

from output measurements. Increasing the number of sensors, as suggested,

will substantially reduce this error if the remnant JR is dominated by

the first few higher modes.



VI • SUMMARY OF DESIGN CONSIDERATIONS

The performance index for the system is broken into two parts:

(1) that contributed by the controlled modes, and (2) that due to the

uncontrolled modes. Application of active control reduces the error in

the controlled modes to' any arbitrary level while the disturbances

producing errors in the (uncontrolled/unmonitored) higher modes cannot

be counteracted. Further, the corrective forces applied by the finite

number of discrete actuators excites additional errors in the higher

modes. When mode estimation is employed, errors due to measurement

uncertainty are introduced into the first N modes. Thus, the total

system error is given by

where I N ,
~1Ileas

observed that

JR , and JR are defined in Eqs. [59~ and [42]. It was
o c

these errors may be minimized by factors under the

designer's control. These factors are actuator location, pad size,

and sensor location. Selection of actuator location permitted

minimization of the excitation of the more significant uncontrolled

modes. The pad size was seen to act as a filter which attenuates the

effect of the control input in exciting the higher modes. The pad

size is selected to cause the modal content of the applied force loading

to drop off quickly above the Nth mode. Combined with actuator locations

.that minimally excite the first few (most significant) higher modes, the

pads together with the plant provide the desired modal filtering for the

46



I

remaining high-order modes. Finally, if estimation errors are to be

minimized, sensor location requirements become the same as those for

actuator placement. In some instances, additional sensors may be used

to reduce the errors in estimating the modal coefficients.

The above points are illustrated most clearly by the example of

a simply supported, thin, square, flat plate with the following

parameters:

Thickness
Length
Width
Young's modulus
Poisson's ratio

0.5 inch (1.27 cm)
30 inches (76.2 cm)
30 inches (76.2 cm)
107 psi (70.3 X 107 gmJcm2)
0.2

Table 1 contains value s of wi which are inversely proportional to

mode transmission as given by the steady values of the A matrix. The

modes are ranked, from most to least significant, in terms of decreasing

(lJ~)2 and control of the low-order modes is desired. With the modes

ordered with m on the ordinate and n on the abscissa, contours of equal

(ID;i)2 become circles in the n,m plane. These circles may be approxi-

mated by squares; for example, if 25 modes are to be controlled they

would include 1 S n S 5 and lS m :s 5 as shown in Fig. l7a. The next

highest mode in each direction is m = 6 and n = 6 which has 25 mutual

nodes equally spaced over the plate, see Fig. 17b. Actuator placement

at these nodes (Which can always be achieved since the m + 1 mode has

m nodes) makes uN orthogonal and precludes excitation of any mode for

which m or n equal 6. Alternatively, the first N most significant

mode~ may be controlled as illustrated in Fig. l7c. This is achieved

by the actuator placement of Fig. l7d. The unexcited modes in the
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8 9 10

unexcited 0 0 0 0 0
modes

0 0 0 0 0

0 0 0 0 [J

0 0 0 0 0
unmonitored

modes 0 0 0 0 0

(a) The m,n plane for the
actuator placement of b.

1

2

3

4

5

6

7

8mm~~m
9 unmonitored

10 modes

(c) The ~,n plane for the
actuator placement of d.

(b) An actuator
configuration utilizing
twenty-five ,actuators.

0 0 a D

0 0 0

0 0 0 0

0 0 0

a 0 0 0

0 0 CJ

a 0 0 0

(d) An alternate actuator
configuration utilizing
twenty-five actuators.

Figure 17.- The loc~tions in the m,n plane of the controlled~ unexcited,
and unmonitored mode s of a flat rectangular plate'.
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latter case are those with m = 8 or n = 8. In any case, final

determination of the optimal trade-off requires detailed evaluation

of the performance index.

Since data regarding the disturbances to which a primary mirror

surface is subjected are not presently available, a disturbance profile

characterized by a modal force coefficient with a standard deviation of

era.
~

.fPIate
=~

386.4
[66J

in pounds per square inch, for all i, was assumed. This profile yields

an rms figure error of

F =
JI

plate
area

~ 50 X 10-6 inches

for the uncontrolled surface which is in reasonable agreement with the

figuring errors of the mirror whose diffraction pattern is given in

Fig. 5. Pad size was selected to be 0.5 inches (1.27 cm) X 0.5 inches

(1.27 cm). Fig .. 18 displays the rms figuring error fora type 1 servo.

.versus the munber of actuators for placement of the type illustrated in

Fig. 17b. The tyPe 0 error was evaluated for optimal gain but did not

provide a significant improvement for the error profile considered.

The details of the procedure used to obtain Fig. 18 are contained in

Appendix C.
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The preceding sections contain the development and summary of

design considerations for the discrete control of a distributed

parameter system. A simply supported flat rectangular plate has been

used as an example because it possesses unique properties which clearly

reveal the results of design decisions which are obscured. in most

distributed system con~rol problems. The following· section presents

the application of the design technique to a plant which is representative

of a thin deformable mirror and whose complexity is more nearly

commensurate with that of plants generally encountered in practice.



VII. MODAL CONTROL OF A FREE CIRCULAR PLATE

Modal Representation

The equation of motion of the free circular plate of Fig. 19 under

forced vibration is

2 2 o~(r,e,t) )
\J S \J w( r, e,t) + P ot2 = p( r, e, t

where w, p, and v2 are expressed in cylindrical coordinates.

[68J

Assuming

solutions separable in r, e, and t [i.e., w(r,e,t) = C i (t)fi (,r)vi (8)],

the analysis follows that of the rectangular plate to yield

where

Since the mode shape given by [69bJ is periodic in e, n is an integer and
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Figure 19.- Free circular plate.
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where A and en are arbitrary constants, I n and In are the nth order

Bessel and modified Bessel functions, respectively. The values of ki

and Bi are determined through substitution of [71] into the boundary

conditions, which for the free plate, arise from the absence at the

free edge of both the bending moment in the radial direction and
(10)

vertical shear; i.e.,

= 0

free edge

and

( ~' d2 + ~ ~ _ n:\fi(r) + n
2

(v - 1) ~drdir(r)J = o. [72bJ
~dr2 r dr r 2) r fu:\- /

free edge

Under the se conditions there exists a denumerably inf10ite se,quence

of eigenvalues

[73J

for which the associated eigenfunctions form a complete orthogonal set

permitting both p{r,e,t) and w(r,e,t) to be expanded in a uniformly

convergent series as assumed in Eqs. [12aJ and ~2bJ •

Table 2.contains values of kmn for several moq,es. Because of the

importance of the modesbapes relative to design decisions, the radial
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components of the first 21 modes, ranked in order of increasing

frequency, CU:i., are plotted in Fig. 20. As a result of the nature of

the e variation in Eq. [71J, each pair m,n is associated with two

distinct modes given by

. {fmn(r)
mode pair m,n =

fmn(r)

cos ne

sin ne

for n f o. For n = 0 a single distinct mode exists for each pair of

m,n. To minimize the expectation of the square surface error, the

actuators shouJ.d affect control on the most significant modes as

determined by the transmission factor l/P~ and the disturbance profile.

For the purposes of this paper, and as in the case of the rectangular

plate, a force distribution with

uncontrolled rms figure error of

2 2
O'ai = O'aj

50 x 10-6

is assumed such that an

inches (1.27 x 10.,.4 cm)

results. With this white modal disturbance the system objective is to

exert control on those modes with the smaller values of kmn in Table 2.

Actuator Size and Placement

The actuators are again modeled as displacement actuators in

series with a spring which is attached to the plate by means of a pad ..

The springs are relatively soft to make the effects of mirror

displacement feedback negligible as discussed in Appendix D. The pad

shape is a portion of an annuJ.us bounded by constant increments in

radius and angle. The elements ~j are evaluated as



n=o

m = 0 rigid body mode

n=3
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n=2

n=4

n=5

Figure 20.- Modes of free vibration of a free circular ~late.
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!:ir . A8·
rj + -i!. 8j +_J

2 2hij 1 J J A[rn(~r)=
jth pad jth pad !:ir . A8.
area area rj

_ --Jl 8j
_ =-..J.

2 2

+ B.I (k r)J cos (n8 + 8n)r dr d8 [75]
~n mIl

for which the 8 dependent component is

where normally the increment ~8 is constant over all j permitting the,

inclusion of 'this component in the decoupled plant dynamics.- The r

component is somewhat less tractable. Under the substitution

the r dependent portion of hij becomes

which is integrable if n is an, even integer, but requires numerical

integration or use of tables if n is odd. The effect ip either case

is that the radial component of hij decreases as ~ increases.
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In determining the placement of the actuators note from Fig. 20

that each mode m,n has nodes at m distinct locations along lines of

constant e and 2n nodes circularly. The placing.of 2n actuators

circularly at equal intervals results in their position coinciding

with the nodes of one of the modes described by Eq. [74J. Consequently,

this mode is not excited while the one spatially shifted 900 is.

To determine the desired actuator placement a knowledge of the

disturbance profile is required. Under the earlier assumption of a

white modal disturbance spectrum (cr2 = cr2 ), the objective is toa i a j

control the modes with the smallest values of kmn• Inspection of

Table 2 indicates that lines of constant kmn tend to form triangles

connecting m to n where

If the controlled modes are n ~ llmax and m ~ rnmax the controlled area

of m,n plane is a rectangle (see Fig. 21a) which should approximate

the region of the first N significant nodes. Actuator placement would

fall at the nodes of the next highest modes which require

Nactuator = 2(nmax + l)(mmax + 1)

actuators corresponding to the mutual (IDmax + 1) nodes radially and

2(~ax + 1) circularly. The controlled modes are the (2~ + 1)

(IDmax + 1) bounded by the rectangle IDmax' ~ plus the IDmax + 1

excited modes for which n =~ + 1. Thus, the total number of

controlled modes is N = 2(nmax + 1) (mmax + 1) = N • The modesactuator
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not excited by this actuator placement are those at n = llmax + 1

whose nodes fallon the lines of constant 8 where the actuators are

placed (those at n = llmax + 1 spatially shifted 900 are the extra

~ + 1 modes included in the N controlled modes). Additionally,

the mode whose radial nodes are selected as actuator locations is not

excited. The pertinent controlled and unexcited regions of the m,n

plane are illustrated in Fig. 2la along with the corresponding

actuator placement in Fig. 21b. However, because of the tendency

of the lines of constant krnn to form triangles as indica~ed in Eq. [7~,

control of an area in the m,n plane as indicated in Fig. 21c is

generally desired. This can be accomplished by the actuator placement

shown in Fig. 21d. Note that in the latter control scheme while the

N most significant modes are controlled; it is not possible to preclude

the excitation of the next most significant modes. The trade-off must

be made on the basis of actuator locatio~ effect on the imaging index

While, at the present time, the imaging index has been detailed

only for the rectangular control scheme illustrated in Fig. 21a,

preliminary results indicate that control of the N most significant

modes (e.g., see Fig. 21c) is preferred. The rms figuring error

F =~ Jr!Plate area based on the rectangular control scheme of Fig. 21a

is plotted in Fig. 22 versus number of actuators for a plate with the

following data:
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(a) The m,n plane for
the actuator placement of b.

(b) An actuator
configuration utilizing
twenty-four actuators.
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0 0

I;;) ~
0

~ 0unexcited
modes 0 t:I

0 () ~ I:)
n

unmonitored 0 0
modes

(c) The m,n plane for the
actuator placement of d.

(d) An alternate actuator
configuration utilizing
twenty-four actuators.

Figure 21.- The location in the m,n plane of the controlled, unexcited,
and unmonitored modes of a ~ree circular plate. ,
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Thickness
Diameter
Young's modulus
Poisson's ratio

0.5 inch (1.27 cm)
30 inches (76•2 cmt107 psi (70.3 x 10 gm/cm2 )
0.2
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These results indicate satisfactory control, yielding diffraction-

limited performance, as defined by an rms figure error of less than

0.5~ inches, is achieved with less than 24 actuators. This is

significantly less than the 61 actuators used in the present laboratory
(14)

model which was determined by sectioning the mirror into e~uilateral

triangles 3.75 inches on a side (the 3.75" X 3.75" X 3.75 u x 0.5" thick

triangles represent a thickness-to-area ratio near that normally found

in monolithic telescope mirrors).



VIII. CONCLUDING REMARKS

The modal expansion technique has been applied to the problem of

correcting and maintaining, to the tolerance required for diffraction

limited performance, the optical figure of a plant representative of

the primary mirror of an orbiting astronomical ob servatory. The modal

technique has been shown to be partic~larly appropriate for this problem

by virtue of its relevance to a useful measure of image quality, its

ability to decouple the system dynamics permitting simple control

techniques to be applied, and by the extent of the insight the technique

affords into engineering design decisions.

For distributed plants subject to extremely accurate control, it

is necessary to consider the effects on system performance of all of

the modes - not just those which are subject to control. In fact, with

the error in the modes under control reduced to any desired level, the

major system error was shown to reside in the uncontrolled higher

order modes and this is increased by the control effort applied to the

lower modes. For this reason the most significant design decisions

are those related to the effects of the corrective control forces on

the higher-order modes. The analysis presented in this paper describes

the effect of actuator size and location on system performance, factors

most critical to efficient design. The reqUisite conditions for

minimizing the number of discrete control inputs required to achieve

satisfactory performance were outlined and then illustrated in two

design examples. The results for both the rectangular plate and the
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free circular plate indicate that the thin deformable mirror can provide

diffraction-limited performance; further, that this performance can be

achieved with considerably less actuators than that required for a

segmented mirror where the thickness-to-area.ratio for each segment

approaches that normally used in monolithic mirrors.

The disturbance profile (if data on the effects of thermal

gradients, spontaneous release of material stresses, or other factors

producing distortion of the optical surface become available) can be

readily incorporated into the de sign procedure. This is a: chieved by

using the profile along with the transmission properties of the plant

(plate) to determine the modal errors and the N modes yielding the

largest errors controlled. Extension to more complex plants (e.g.,

shells), while requiring considerable computing effort, is direct.
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(2)
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APPENDIX A

Determination of the EigenfU+lctions and Eigenvalues of
a Simply Supported Flat Rectangular Plate

The equation of motion of a uniform plate in forced vibration(9). is

d~(X,y,t)
ifsifw(x,y,t) + p = p(x,y,t)

dt2

consider first the homogeneous equation. The modes of free vibration

will be determined through the separation of variables technique by

assuming

Substituting [A2] into [Al]

S J"W2(X,y)

P w2(x,y)

Since each side of G-4J is a function of different variables, both

sides are set equal to wi - a positive constant. This yields the

following equations
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Rearranging [A5] yields

or

The solution to [A8] is the sum of the solutions to each of the products

of [A8] or therefore to

if is the Laplacian in Cartesian coordinates. Equations [A9] and

[Al~.are therefore
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A further assumption is made that

In this case [All] becomes

Dividing by w3(X)W4(y) and rearranging yields first

then

+ro r;; =
- i~~

Since the left side is equal to a function of x, and the right a

function of y both sides must be equal to a constant + ~2. (The

choice of sign on ~2 is arbitrary since choosing as the constant _ ~2

will yield the same answers.) Equation [A15] becomes

and
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The solutions to these equations are

and

respectively.

From equations [A12], [A18], and [A19] the solution to equation~~

is

where A3 is the product of Ai and A2. In order to evaluate the constants

in /!-20J the boundary conditions must be specified. For a simply

supported flat plate they are(lO)

w2 (x,y) = 0 for x = O,a
y = O,b

Mx = 0

x=O
x=a

and
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y=O
y=b

In light of [A21J the equations [A22J and [A23J may be written as

x=o
x=a

= 0

= 0

y=O
y=b

Using the conditions for x = 0, y = 0 from equation I3-21J in [A20J
yields

s = s = 01 2

Using the condition of equation ~2~ ,for y = b yields

sin i-lb = 0

and therefore

nn
i-l =13'"" n == 0, 1, 2, ...



From the condition for x ~ a

sin (- ~2 + ruiM)a= 0

or

m ~ 0, 1, 2

Substituting [A28] and [A30] into ~20] gives in [A3~ the shape of the

modes of free vibration, or eigenfunctions, of the plate

n,m ~ 1, 2,3, •••

The resulting mode shape is identically zero.for either m or n zero,

conseCluently, eCluation [A31] is valid for the range of m and n

indicated.

That eCluation [A3J] satisfies (!i.2~ and [A25] may be verified through

substitution. Further, A3 may be chosen to satisfy the reCluirement

rb
ram~(X,y)dx dy ~ 1JO Jo ].

which yields



( ) 4 . mroc . n!fY
w2 x, Y = ab s~n a s~n b

This could also have been obtained from [A27J, [A28], and [A30].
Since the solution to (6) is

The most general solution to the homogeneous form of [AI] is

75

w(x,y,t)

00

=I mrx mny
A cos(ro + s )sin ---- sin----

mn mn mn a b
m,n=l

Thus the eigenfunctions or modes of free vibration and their

associated eigenvalues have been determined for a simply supported,

flat, rectangular plate and are given by equations [A34] and [A37]
respectively.



APPENDIx: B

Determination of a Set of Actuator Locations for Which UN For
a Simply Supported Flat Rectangular Plate is O~thogonal

The purpose of this appendix is to indicate} for a simply supported}

flat} rectangular plate a set of actuator locations which make the UN

matrix (eq. ()g) orthogonal. The equation of motion of a beam(15) is

= -

2d w(x}t)

dt2

The method of separation of variables is used} consequently}

Substituting @2J into ~lJ gives} after dividing both sides by w(x}t)}

l d4w2(x)

wl(x) dx4

Both sides are set equal to a con'stant ,,4

d4wl(X)
T

2 4 .
dx

d2w2(t)

dt2

The solution to [B4bJ is
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The solution to the remaining equation, [!34~, will yield the modes of

free vibration of the beam. Since the exact solution will be used in

the sequel this information will be obtained first.

Equation [B4~ is factored as

and the solution is the sum of the solutions to

(
d2 -l-)w- - - (x) = 0

dx2 T 1

and

Thus

at this point the boundary conditions are brought in. For a simply

supported beam (10)



and there are no moments at eithe r x = 0 or x =: b

= 0
x=O
x=b

These conditions re~uire

[Bll<]

o = - z:k3 cos .2- b + C4 sin ...L- J + r2rC5cOSh L b + C6 sinh ...l.- ~
'IT[ '(T \IT J \}TL fT 'fT J

[Bll~
From equations [BllaJ and [Bll~ it is determined that

leaving

o =C4 sin )'b + C6 sinh ...l.- b
\[T v:;

O C · )'b C sinh )' b= - 4s~n \fT +6 \IT

A nontrivial result re~uires the determinant of the coefficients of

C4 and C6 in e~uations ~13J and [Blg to be zero. Conse~uently,



-vi-. • I'b
2 sin _/_u sl.nh -- = 0

\IT \[T

or
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[Bl:5]

substitution of (2316J into [B13] indicates that C6 = 0 and

-L = ~ [B17'"\JT b J

The eigenfunction of the homogeneous simply supported beam is

, The. solution to the problem is now considered through the method

of finite differences. A number of stations are located at equal

intervals, 1., along the beam as shown in the following sketch

and the equation

is written at each point, where wN= col (),)(x1 ), •.. W(Xu)' The fourth

derivative approximation used can be obtained by first obtaining the



Taylor series expansions about xr of w(xr +l ), w(~+2)' w(Xr_l)'

w(xr _2)' These expressions are

80

7- 2w(xr +1 ) = w(xr ) + w' (xr ) 7- + w"(x )- + .
r 2!

• . +

(n) (27-)n
• + W (xr )

'n!

• • • +

4
1. (24 _ 4),TiT

subtracting four times ([B20aJ + [s20bJ) from [B20eJ + [B20dJ yields

+ 2 d
4WtX)
ax

x""Xr

. + 2 d2mw(x)
dx2m

X=Xr

+ . • •

After rearranging equation [B21J becomes



w(xr _2) - 4w(xr _l ) + 6w(xr ) - 4w(xr+l) + w(xr+2) d4w(x)

z4 = dx4
X=Xr

81

+ 0 0 •

d~(x)
+ 2 ----.......

. dx2m

Z2(m-2)22(m-l)

(2m) !
+ • • •

The term on the left will be denoted ~d. The finite difference method

approximates the plant equation as

Collecting the expressions for each point and arranging them as

indicated by the definition of wNyields the matrix equation.

W(xl) w(xl)

2

L:rdm
)'fd

= .
1"

w(Xn) w(xn)

The solutions to this equation are the eigenvectors of the finite

difference - matrix representation of the plant, Lfdm0 The matrix

is a real symmetric matrix and consequently, has orthogonal

eigenfunctions 0

If the right-hand side of equation @22J is used instead of the

left it is possible to obtain an analytic expression ~or the numerically
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obtained finite difference answers. That is, consider the equation

T

d2mw(X) f(m-2)2(m_l) +
w(x) + . • • + 2 _--:.--:.... --:-~- Z-

dx2m (2m) I

The answer to this equation evaluated at x = Xx- is equal to the finite

difference answer.

a = 1+ _1'1d + ••• + (_l)rn{.2..)2m 7,2(m-2) 22(m-l) + • •• [B26]
~ T2 \y:; (2m ) r

Thus ~ (x) is the solution to [B2~, and ~ (Xl) = w(Xi), when

( )

2m
-1 m l'

+ f2m~' iT + . . •

1 is the separation between adjacent stations on the beam and it can

be made as small as desired. Consequently, equation [B2iJ indicates

the re sultant convergence of l'fd • to L. More significant for the
\IT VT

purpose of this appendix is the fact that the i th component of the

jth eigenvector of the finite difference solution is equivalent to

the jth eigenfunction of the beam evaluated at a location corresponding



to the i th point in the finite difference representation of the beam.

Since the matrix UN of ECl' ()1Q is

•

each column corresponds to one of the orthogonal eigenvectors of Lfdm

and the matrix UN is itself orthogonal.

To this point the proof has concerned the solution for a beam,

while it is desired to show

f ui(Xk)Uj(Xk) = 0

k=l

i f j

for the plate. For the plate, Appendix A shows that

m rock tl·~= Ci sin -~-'--- sin~
a b

conseCluently, Eq. [B29] may be written

N

I Ui (Xk)Uj(~)
k=l

N

=I U:x:i (Xk)Uyi (Yk)UXj(~)Uyj(Yk)
k=l
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Consider an array of locations

with X locations in the x direction and Y in the Y direction. Thus

[B3J] becomes

N

Luxi(Xk)uyi(Yk)Uxj(xk)Uyj(xk)

k=l

or

x Y

= I I Uxi(XA)Uyi(YB)Uxj(XA)Uyj(YB)
A 3=1 B4=1

x Y

= I Uxi (XA)Uxj(XA) I Uyi (XB)Uyj (XB)

Ay:l B4=1

Each component in the second expression for the right-hand side of Q333]
is equivalent to the beam, consequently, either the first or second

summation will be zero unless i = j.

Equally spaced points will provide an orthogonal matrix for the

purpose of relating performance specification in the original and

transformed systems.



APPENDIX C

Evaluation of the RMS Figuring Error' for a Simply
Supported Flat Rectangular Plate

The purpose of this appendix is to describe in detail one of the

procedures used in determining' the results contained in Figure 18. As

indicated in equations [4~ and [67J the exact determination of JI would

require the evaluation of an infinite number of terms. In using a

finite number of terms P to approximate JI and:, therefore the rms error,

it is desired to select such a P, if possible, which would place a bound

on the amount by which the approximate value of JI would differ from

the true value.

The value of Pwhich should be used is a function of the individual

terms in the sequences

and

a{, 2 of-(J)2' n

Since

a'
c i

~ss=--
ss ~

one procedure might be, for monotonically decreasing values of ciss '

to observe values of ciss in E~~ for increasing i until values of

ci are obtained which are significantly less than the accuracy desired.ss
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The value of JI may be determined for two values of P in this neighbor-

hood to determine whether or not J I has been obtairied accurately enough.

While such a procedure would be adequ,ate the specific nature of

the present problem permits the selection of P on a more rigorous

basis. For a square plate the expression contained in Appendix A for

the eigenvalues becomes

From Eqs. [2J, [15J, and [C3J, and [C4J

Since m and n each take on the values of all the positive integers

the right-hand side of [C5J may be rewritten

[c6]

In order to remove one of the infinite summations, use is maaeof the

symmetry of the eigenvalues by writing [C6J as
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where aij is considered a constant as has already been assumed (see

Eq. [66J). The terms i 2 + j2 in the series

co i

kl kl [12 : j2J4
[C8J

are placed into correspondence with the positive integers in the order

indicated by @8J. It is desired to indicate .for the

corresponding to the k th value in [C8J that

·2 + .2 >k
~ Jk-

In the first n values of i the+e" are

n

T =L i
i=l

terms where T is

T = n(n + 1)
2

i and j

The j = 1 term is the minimum value of i 2 + j 2 for any value· of i.

Since, for i = n

if

n2 > nen + 1)
2
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inequality@9] will be obtained. Since [Cl~ is valid for

n~l

then [C9.J holds and the right side of [C7] may be written

The advantage of the last series is that its sum has a bound. The

partial sum for the first 2t - 1 terms .is

[C16]

which is less term by term than

which is

(2t~1)4)
[ C17]

thus

1 1 (1)2Q' = + - + -
2G-l ~ 23 . 23 ( ~

t-l

+ • . . + 2:-
. 23 [Cl~

1
- (2~)t (2i)t-l

23
Q'2t _l = = [C19]

23 - 1 23 - 11
1 --

23



The second of the two terms is always negative and goes to zero as

2t _ 1 increases. Thus the sum of the primed series from the 2t - 1

term to the end, Q, is less than the second term on the right side

(-5\)tt--ll
QR<~

23 - 1
[C2OJ

Since the primed series is greater than by term than the k serie~the

sum of the k series over the same terms must also be bound by the same

amount.

The original series is smaller than the k series term by term,

therefore, since

[C2l]

w2(x,y,t)dx dy

2 -1 8 2

=I ~~:J2 emf

co

1 ' \'

+ nr] 4 +iL:
2
t ~1L4]2[nfJ

[C22J

then

, 2 -1"alb \'J w2(x,y,t)dx dy ::; L
o 0 • 1

~=
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and

The inequality may be used either to place a bound on the error

for a fixed number of modes considered in the evaluation, or conversely,

it may be used to select the number of modes which must be considered

to keep the error below a certain level. It should be noted that the

value of ai in [C24J is the result after control and must be chosen

conservatively enou.gh to reflect the induced error as well as that

already present. Once the bound on the error has been selected t may

be determined from @24J. This equation was based on the use of 2t - 1

terms in the series, consequently a square n X n array of modes cannot

be used for which

n(n + 1) > 2t _ 1
2

Finally, the tightness of the bound is dependent on how clos~ly

the k series approximates the true series for the terms after the 2t - 1

term. The bound may be tightened by observing actual deviations and

adjusting the inequality [C2~ by the appropriate amount.



APPENDIX D

Mirror Displacement Feedback

The actuators considered in this appendix are modeled as types

which are being considered for actual usage(6-8). This model consists

of a pure displacement actuator acting against a spring and a backing

plate which is stiff relative to the spring. To obtain a specified

force the displacement actuator is commanded to a new location relative

to the undeformed mirror.

If the mirror has deformed, the displacement of the mirror will alter

the magnitude of the applied force. It is assumed, arbitrarily, that

one form of this displacement feedback might take is

where Pi(x,y,t) is the force density applied by the i th actuator, and

where

Wi (x,y, t) = w(x,y, t)

th .th d dover e ~ pa area, an

elsewhere, and

Kli(t)
a.i (t) = ----.;...----

~~ ~i(x,y)dx dy
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w.(x,y,t) may be expanded as
~

where

w.(x,y,t)
~ .

co

~I
j=l

c! .(t)u.(x,y)
~J J

[D4]

c! .( t) =J' r wi(x,y, t)u .(x,y)dx dy
~J Jr. J

Since wi(x,y,t) is zero except over the pad area of the i th pad [D5]

can be written

c:Lj(t) = J J w(x,y,t)Uj(x,y)dx dy

i th pad
area

substituting the modal expansion of w(x,y,t) yields

[00]

co

Cij(t) = J J. Lck(t)~(x,Y)Uj(X'Y)dx dy.. [D7]
i th pad k=l
area

Interchanging the order of summation and integration -yields

co

Cij =L ck(t)

k=l

J J uk(x,Y)Uj(x,Y)dx dy

i th pad
area

[DB]
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The total feedback force, fs(x,y,t) is

N

\ fs(x,y,t) = - K I wi(x,y,t)

i=l

substituting [D4] into [D9]

N . 00

fs(x,y,t) = - K I I cij(t)Uj(X'y)

i=l j=l

Interchanging the order of summation

[D9]

- K

By comparison with equation [12bJ fs(x,y,t) can be expressed modally as

00

fs(x,y,t) = I aj (t)Uj(X'y)

j=l

where

N

aj(t) = - K I c1j (t)

i=l

Equations [D13J and [oB] can be used to put the expression for aj(t)

into a different form

J J' Uk(x,y)Uj(X'y)dx dy

i th pad
area .



Interchanging the order of summation

thus

00 N

=ICk(t)L
k=l i=l

Jf
ith pad
are~

- a' (t) = ... KZ c( t)

where Z is an 00 X 00 matrix which has individual elements of

N

ZjZ = I f J uj(x,y)UZ(x,y)dx

i=l ith pad
area

and where the spring constants are all assumed equal.

The matrix Z is located in a local feedback loop around the

[D16]

[ D17]

diagonal plant matrix since it describes amplitudes in the force modes

as a function of the displacement mode amplitudes. Since,in general,

the elements of Z are non-zero, this feedback causes the system to

become coupled. In this particular application the coupling exists but

can be made to have negligible amplitude. Since the displacement of

the mirror is on the order of microinches the spring constant is adjusted

so that the actuator throw required is on the order of inches.

Alternatively, a form of spring feedback may occur which can be

treated without introducing coupling. Suppose that the expression for
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which would be obtained by decreasing the pad area until the mirror

displacement over the pad area is constant. This, depending on the

manner in which the pad is bonded to the mirror, appears to be a

reasonable assumption. Expanding [D1S] yields

Kld. l3i(x,y)
Pi(x,y,t) = l ~_

~~l3i(X'y)dx dy

This equation can be analyzed by a procedure similar to the preceding

paragraph, or equivalent results may be determined from an inspection

of the appropriate block diagram. Proceeding as previously,the second

term in [D19] is

fsi(x,y,t) "- K2~~i(X'y~~~ ~i(x,y)dx dy

where Lm is the constant value of w(x,y,t) over the pad area. It is

desired to express fs(x,y,t) in a modal expansion

co

f Si(x,y,t) = I aiit)Uj(X'y)

j=l

where

a~ .(t)
lJ = -'~/fJ ·13. (x,y)dx dY)- rr w.(x,y,t)I3.(X,y)u.(x,y)dx dy

\jJJ r l JJ r l l J [D22]



Since wi(x,y,t) is constant over the pad area and l3i(x,y) is zero

elsewhere [D22] becomes

if
If ith pad

l3i (x,y)dx dy area
r

- K1m• (t)
. ~

a.I.(t) =------
~J

The integral has been previously evaluated as h ji (Eq. [1&]), therefore

and if the integral of l3i (x,y) is equal to that of l3 j (X,y) then

- K H1N(t)

~~l3i(X'Y)dx dy

where

In this case the general result indicates that there is coupling in the

system. If the system is assumed to have only finite eigenfunction

content then



w
N = f ci(t)ui(x,y)

i=l

If [D27] is placed in matrix form

where
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[D27]

The spring feedback loop as described by [D18] and ~25J is shown in

Figure D-l

HN a,(t) K . aCt) AN c(t)
UN

wN(t)---... IffPj(x,y) dx dy(t)
,

,1'.

- ~

a let)

K

- ffPj(x,y) dx dy
HN -

Feedback to
Controller

Figure D-l

The spring feedback loop.
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As indicated previously, under appropriate conditions, the matrix can

be written as the product of a diagonal matrix and a nondiagonal matrix

as in 34. In this case the spring feedback loop becomes that shown in

Figure D-2

K GNAN

- UN'~ UN ~

fir f3i(X'y)dx dy

uN' uN·

WN

Figure D-2

The spring feedback loop for

Both GN and

when

K

~u1'f3i(x,y)dx dy

. __N' __N-l
u-· == u-' . the system is

are diagonal elements. Consequently,

decoupled (see Fig. D-3) and the effects

of the spring feedback can be readily included in the system design.

Controller

K GNAN
~ uN'~~Jr

uN -~f3i (x,y)dx dy~

Feedback to

Figure D-3

The decoupled spring feedback loop.
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In summary, under a specific set of assumptions, the effects of

the mirror displacement feedback can be treated without introducing

coupling effects into the system. In general, coupling effects are

present, however, the mirror displacement feedback is rendered negligible

through an appropriate choice of spring constant.
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